Rabu, 30 November 2011

Mata kuliah Statistik

MENYAJIKAN DATA DALAM BENTUK TABEL DISTRIBUSI FREKUENSI

Selain dalam bentuk diagram, penyajian data juga dengan menggunakan tabel distribusi frekuensi. Berikut ini akan dipelajari lebih jelas mengenai tabel distribusi frekuensi tersebut.
1. Distribusi Frekuensi Tunggal
Data tunggal seringkali dinyatakan dalam bentuk daftar bilangan, namun kadangkala dinyatakan dalam bentuk tabel distribusi frekuensi. Tabel distribusi frekuensi tunggal merupakan cara untuk menyusun data yang relatif sedikit. Perhatikan contoh data berikut.
5, 4, 6, 7, 8, 8, 6, 4, 8, 6, 4, 6, 6, 7, 5, 5, 3, 4, 6, 6
8, 7, 8, 7, 5, 4, 9, 10, 5, 6, 7, 6, 4, 5, 7, 7, 4, 8, 7, 6





2. Distribusi Frekuensi Bergolong
Tabel distribusi frekuensi bergolong biasa digunakan untuk menyusun data yang memiliki kuantitas yang besar dengan mengelompokkan ke dalam interval-interval kelas yang sama panjang. Perhatikan contoh data hasil nilai pengerjaan tugas Matematika dari 40 siswa kelas XI berikut ini.
66 75 74 72 79 78 75 75 79 71
75 76 74 73 71 72 74 74 71 70
74 77 73 73 70 74 72 72 80 70
73 67 72 72 75 74 74 68 69 80
Apabila data di atas dibuat dengan menggunakan tabel distribusi frekuensi tunggal, maka penyelesaiannya akan panjang sekali. Oleh karena itu dibuat tabel distribusi frekuensi bergolong dengan langkah-langkah sebagai berikut.
a. Mengelompokkan ke dalam interval-interval kelas yang sama panjang, misalnya 65 – 67, 68 – 70, … , 80 – 82. Data 66 masuk dalam kelompok 65 – 67.
b. Membuat turus (tally), untuk menentukan sebuah nilai termasuk ke dalam kelas yang mana.
c. Menghitung banyaknya turus pada setiap kelas, kemudian menuliskan banyaknya turus pada setiap kelas sebagai frekuensi data kelas tersebut. Tulis dalam kolom frekuensi.
d. Ketiga langkah di atas direpresentasikan pada tabel berikut ini.

Istilah-istilah yang banyak digunakan dalam pembahasan distribusi frekuensi bergolong atau distribusi frekuensi berkelompok antara lain sebagai berikut.
a. Interval Kelas
Tiap-tiap kelompok disebut interval kelas atau sering disebut interval atau kelas saja. Dalam contoh sebelumnya memuat enam interval ini.
65 – 67 → Interval kelas pertama
68 – 70 → Interval kelas kedua
71 – 73 → Interval kelas ketiga
74 – 76 → Interval kelas keempat
77 – 79 → Interval kelas kelima
80 – 82 → Interval kelas keenam
b. Batas Kelas
Berdasarkan tabel distribusi frekuensi di atas, angka 65, 68, 71, 74, 77, dan 80 merupakan batas bawah dari tiap-tiap kelas, sedangkan angka 67, 70, 73, 76, 79, dan 82 merupakan batas atas dari tiap-tiap kelas.
c. Tepi Kelas (Batas Nyata Kelas)
Untuk mencari tepi kelas dapat dipakai rumus berikut ini.
Tepi bawah = batas bawah – 0,5
Tepi atas = batas atas + 0,5
Dari tabel di atas maka tepi bawah kelas pertama 64,5 dan tepi atasnya 67,5, tepi bawah kelas kedua 67,5 dan tepi atasnya 70,5 dan seterusnya.
d. Lebar kelas
Untuk mencari lebar kelas dapat dipakai rumus:
Lebar kelas = tepi atas – tepi bawah
Jadi, lebar kelas dari tabel diatas adalah 67,5 – 64,5 = 3.
e. Titik Tengah

3. Distribusi Frekuensi Kumulatif
Daftar distribusi kumulatif ada dua macam, yaitu sebagai berikut.
a. Daftar distribusi kumulatif kurang dari (menggunakan tepi atas).
b. Daftar distribusi kumulatif lebih dari (menggunakan tepi bawah).
Untuk lebih jelasnya, perhatikan contoh data berikut ini.

4. Histogram
Dari suatu data yang diperoleh dapat disusun dalam tabel distribusi frekuensi dan disajikan dalam bentuk diagram yang disebut histogram. Jika pada diagram batang, gambar batang-batangnya terpisah maka pada histogram gambar batang-batangnya berimpit. Histogram dapat disajikan dari distribusi frekuensi tunggal maupun distribusi frekuensi bergolong. Untuk lebih jelasnya, perhatikan contoh berikut ini. Data banyaknya siswa kelas XI IPA yang tidak masuk sekolah dalam 8 hari berurutan sebagai berikut.

5. Poligon Frekuensi
Apabila pada titik-titik tengah dari histogram dihubungkan dengan garis dan batang-batangnya
dihapus, maka akan diperoleh poligon frekuensi. Berdasarkan contoh di atas dapat dibuat poligon frekuensinya seperti gambar berikut ini.

6. Poligon Frekuensi Kumulatif
Dari distribusi frekuensi kumulatif dapat dibuat grafik garis yang disebut poligon frekuensi kumulatif. Jika poligon frekuensi kumulatif dihaluskan, diperoleh kurva yang disebut kurva ogive. Untuk lebih jelasnya, perhatikan contoh soal berikut ini.


b. Ogive naik dan ogive turun
Daftar frekuensi kumulatif kurang dari dan lebih dari dapat disajikan dalam bidang Cartesius. Tepi atas (67,5; 70,5; …; 82,5) atau tepi bawah (64,5; 67,5; …; 79,5) diletakkan pada sumbu X sedangkan frekuensi kumulatif kurang dari atau frekuensi kumulatif lebih dari diletakkan pada sumbu Y. Apabila titik-titik yang diperlukan dihubungkan, maka terbentuk kurva yang disebut ogive. Ada dua macam ogive, yaitu ogive naik dan ogive turun. Ogive naik apabila grafik disusun berdasarkan distribusi frekuensi kumulatif kurang dari. Sedangkan ogive turun apabila berdasarkan distribusi frekuensi kumulatif lebih dari. Ogive naik dan ogive turun data di atas adalah sebagai berikut.

Mean (rata-rata)

Rata-rata (mean) adalah hasil penjumlahan nilai-nilai anggota sebuah kelompok (∑Xn) dibagi jumlah anggota kelompok tersebut. Ada tiga jenis rata-rata yang dikenal dalam statistik yaitu rata-rata hitung (x ̅), rata-rata ukur (Gm atau U) dan rata-rata harmonik (rh atau H). adapun kegunaan dari rata-rata di atas sebagai berikut:

rata-rata hitung: Mengukur nilai rata-rata sebenarnya dari data misalnya Rata-rata nilai mata kuliah statistika untuk siswa MTs Darul Hikmah, Rata-rata jumlah pencari kerja selama tahun 1990 sampai 2004 yang terdaftat di Disnaker Surabaya

rata-rata ukur: Mengukur tingkat perubahan ( rate of change) untuk data nilai positif misalnya Rata-rata tingkat pertambahan pinjaman setiap bulan di kantor penggadaian. Diketahui data sambungan telpon selama setahun. Berapa rata-rata pertumbuhan sambungan telpon setiap bulan.

rata-rata harmonik: Mengukur nilai rata-rata data yang memiliki nilai positif dan ada rasio. Misalnya Tiga pegawai bagian pembelian diberi tugas membeli kayu di pedalaman. Setiap pegawai mendapat uang Rp. 450 juta. Dari hasil pembelian diperoleh bahwa pegawai ke-1 membeli kayu seharga Rp. 30.000/m3, pegawai ke-2 Rp.35.000/m3, pegawai ke-3 Rp.32.000/m3. Berapa rata-rata harga kayu per meter kubik yang telah dibayar oleh perusahaan. Si A bepergian pulang pergi. Saat pergi kecepatannya 10 km/jam dan pulangnya 20 km/jam. Berapa rata-rata kecepatan pulang pergi?
Dalam postingan kali ini akan dibahas dulu untuk rata-rata hitung

Rata-rata hitung adalah rata-rata yang paling sering digunakan dalam kehidupan sehari-hari. Para guru sering membuat rata-rata nilai siswa selama satu catur wulan tertentu. Adapun untuk data tunggal, rumus dalam menghitung rata-rata dapat menggunakan tiga cara. Dalam buku ini hanya akan dibahas satu cara yaitu:



untuk data tunggal dan

Untuk data kelompok dimana i=1,2, k (k adalah banyaknya interval kelas) fi adalah frekuensi kelas ke-I dan Xi adalah nilai tengah kelas ke- i.
Misalnya kita memiliki data hasil ujian 25 orang siswa/i sejarah peradaban Islam MTs Darul Hikmah sebagai berikut:

79  63  72  82  74
36  42  67  51  88
68  73  78  77  96
67  67  48  41  57
91  45  83  71  50

Maka kita dapat menghitung rata-rata nilai siswa MTs Darul Hikmah untuk mata pelajaran Sejarah Peradaban Islam dengan menggunakan rumus di atas sebagai berikut:

jadi rata-ratanya adalah (x ̅) = 66,64

Jika data di atas kita buat dalam bentuk kelompok, maka yang pertama yang harus dilakukan adalah membuat tabel distribusi seperti dibawah ini:




Dengan menggunakan rumus di atas maka kita dapat menentukan rata-rata dengan cara:


bandingkan hasil perhitungan data kelompok dengan data tunggal!!

kita menemukan bahwa menghitung mean pada data berkelompok menghasilkan nilai yang berbeda dengan menghitung mean pada data tunggal. Aspek ramalan yang kita gunakan pada penentuan mean dengan menggunakan data berkelompok turut menentukan hasil mean yang kita temukan. Ternyata menentukan modus dengan tidak mengelompokkan data lebih tepat daripada kita mengelompokkan data terlebih dahulu. tingkat ketempatan akurasi ini dikarenakan dengan manggunakan data tunggal, maka yang kita hitung adalah data sebenarnya.

Modus (mode)

Modus merupakan fenomena yang paling banyak terjadi. Modus paling banyak digunakan pada penelitian kualitatif. Dalam penelitian kualitatif, hal yang paling banyak menyebabkan suatu keadaan sering di anggap penyebab keadaan tersebut. Misalnya kebanyak kecelakaan lalulintas disebabkan oleh pengemudi yang mabuk. Pengemudi yang mabuk dalam hal ini adalah “modus”. Dalam data berbentuk kuantitatif, modus sangat mudah untuk dideteksi. Dengan melihat data kita tinggal menentukan angka berapa yang paling sering muncul. Angka yang sering muncul itulah yang kita sebut dengan modus.
Pada data nilai siswa pada mata pelajaran sejarah kebudayaan Islam di atas terlihat bahwa angka yang paling sering muncul adalah 67 yang muncul sebanyak tiga kali dan tidak ada yang muncul sebanyak itu dari data yang lain. Akan tetapi pada data yang telah tersusun dalam tabel frekuensi, modus dapat di cari dengan menggunakan rumus:


Keterangan:
b = batas bawah kelas modus yaitu kelas yang memiliki frekuensi terbanyak
p = panjang kelas modus
b1 = frekuensi kelas modus dikurangi frekuensi kelas interval dengan tanda kelas yang lebih kecil sebelum tanda kelas modus
b2 = frekuensi kelas modal dikurangi frekuensi kelas interval dengan tanda kelas yang lebih besar sesudah tanda kelas modus.

Misalnya dari tabel frekuensi di atas kita dapat menghitung modusnya. Dengan memperhatikan tabel kita akan menemukan
b = 70,5
p = 10
b1 = 7 – 5 = 2
b2 = 7 – 3 = 4
Dengan memasukkan data tersebut ke dalam rumus akan kita dapatkan


Kembali kita menemukan bahwa menghitung modus pada data berkelompok berbeda dengan menghitung modus pada data tunggal. Aspek ramalan yang kita gunakan pada penentuan modus dengan menggunakan data berkelompok turut menentukan hasil modus yang kita temukan. Ternyata menentukan modus dengan tidak mengelompokkan data lebih tepat daripada kita mengelompokkan data terlebih dahulu.

Tidak ada komentar:

Poskan Komentar